Part Number Hot Search : 
BC807 SEL1053M CPC10 SNC431 MC8820 CPC10 CBT3253 LVC02
Product Description
Full Text Search
 

To Download TSX920 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. december 2013 docid024310 rev 3 1/31 TSX920, tsx921, tsx922, tsx923 10 mhz rail-to-rail cmos 16 v operational amplifiers datasheet - production data features ? rail-to-rail input and output ? wide supply voltage: 4 v - 16 v ? gain bandwidth product: 10 mhz typ at 16 v ? low power consumption: 2.8 ma typ per amplifier at 16 v ? unity gain stable ? low input bias current: 10 pa typ ? high tolerance to esd: 4 kv hbm ? extended temperature range: -40 c to +125 c ? automotive qualification related products ? see the tsx5 series for low power features ? see the tsx6 series for micro power features ? see the tsx929 series for higher speeds ? see the tsv9 series for lower voltages applications ? communications ? process control ? test equipment description the tsx92x single and dual operational amplifiers (op-amps) offer excellent ac characteristics such as 10 mhz gain bandwidth, 17 v/ s slew rate, and 0.0003 % thd+n. these features make the tsx92x family particularly well-adapted for communications, i/v amplifiers for adcs, and active f iltering applications. their rail-to-rail input and output capability, while operating on a wide supply voltage range of 4 v to 16 v, allows these devices to be used in a wide range of applications. auto motive qualification is available as these devices can be used in this market segment. shutdown mode is available on the single (TSX920) and dual (tsx923) versions enabling an important current consumption reduction while this function is active. the tsx92x family is available in smd packages featuring a high level of integration. the dfn8 package, used in the tsx9 22, with a typical size of 2x2 mm and a maximum height of 0.8 mm offers even greater package size reduction. 627 76; 627 76; 0lql62 76; 0lql62 76; ')1[ 76; 62 76; table 1. device summary op-amp version with shutdown mode without shutdown mode single TSX920 tsx921 dual tsx923 tsx922 www.st.com
contents TSX920, tsx921, tsx922, tsx923 2/31 docid024310 rev 3 contents 1 package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 absolute maximum ratings and operating c onditions . . . . . . . . . . . . . 4 3 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 input pin voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 long-term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.6 capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.7 high side current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.8 high speed photodiode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1 sot23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 sot23-6 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3 miniso8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.4 so8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.5 dfn8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.6 miniso10 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
docid024310 rev 3 3/31 TSX920, tsx921, tsx922, tsx923 package pin connections 31 1 package pin connections figure 1. pin connections (top view) sot23-5 (tsx921) 9&& 9&& 287 ,1 ,1 287 ,1 ,1 9&& ,1 287 9&& ,1      6+'1   9&& ,1 287 9&& ,1     9&& 9&& 287 ,1 ,1 287 ,1 ,1         sot23-6 (TSX920) miniso8/so8 (tsx922) dfn8 2x2 (tsx922) miniso10 (tsx923)
absolute maximum ratings and operating conditions TSX920, tsx921, tsx922, tsx923 4/31 docid024310 rev 3 2 absolute maximum ratings and operating conditions table 2. absolute maximum ratings (amr) symbol parameter value unit v cc supply voltage (1) 1. all voltage values, except the differential volt age are with respect to network ground terminal. 18 v v id differential input voltage (2) 2. the differential voltage is the non-inverting input term inal with respect to the inverting input terminal. v cc mv v in input voltage v cc- - 0.2 to v cc+ + 0.2 v i in input current (3) 3. input current must be limited by a resistor in series with the inputs. 10 ma t stg storage temperature -65 to +150 c r thja thermal resistance junction to ambient (4)(5) sot23-5 sot23-6 miniso8 so8 dfn8 2x2 miniso10 4. short-circuits can c ause excessive heating and destructive dissipation. 5. r th are typical values. 250 240 190 125 57 113 c/w t j maximum junction temperature 150 c esd hbm: human body model (6) 6. according to jedec standard jesd22-a114f 4000 v mm: machine model (7) 7. according to jedec standard jesd22-a115a 100 cdm: charged device model (8) 8. according to ansi/esd stm5.3.1 1500 latch-up immunity 200 ma table 3. operating conditions symbol parameter value unit v cc supply voltage 4 to 16 v v icm common mode input voltage range v cc- - 0.1 to v cc+ + 0.1 t oper operating free air temperature range -40 to +125 c
docid024310 rev 3 5/31 TSX920, tsx921, tsx922, tsx923 electrical characteristics 31 3 electrical characteristics table 4. electrical ch aracteristics at v cc+ = +4.5 v with v cc- = 0 v, v icm = v cc /2, t amb = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit v io input offset voltage v icm = 2 v t min < t op < t max 4 5 mv v io / t input offset voltage drift 2 10 v/c v io long-term input offset voltage drift (1)(2) TSX920 / tsx921 tsx922 / tsx923 6 9 i ib input bias current v out = v cc /2 t min < t op < t max 10 100 200 pa i io input offset current v out = v cc /2 t min < t op < t max 10 100 200 r in input resistance 1 t c in input capacitance 8 pf cmrr common mode rejection ratio 20 log ( v ic / v io ) v icm = -0.1 v to 2 v, v out = v cc /2 t min < t op < t max v icm = -0.1 v to 4.6 v, v out = v cc /2 t min < t op < t max 61 59 59 57 82 72 db a vd large signal voltage gain r l = 2 k , v out = 0.3 v to 4.2 v t min < t op < t max r l = 10 k , v out = 0.2 v to 4.3 v t min < t op < t max 100 90 100 90 108 112 v oh high level output voltage r l = 2 k to v cc /2 t min < t op < t max r l = 10 k to v cc /2 t min < t op < t max 50 10 80 100 16 20 mv from v cc + v ol low level output voltage r l = 2 k to v cc /2 t min < t op < t max r l = 10 k to v cc /2 t min < t op < t max 42 9 80 100 16 20 mv i out i sink v out = 4.5 v t min < t op < t max 16 13 21 ma i source v out = 0 v t min < t op < t max 16 13 21 i cc supply current (per amplifier) no load, v out = v cc /2 t min < t op < t max 2.9 3.4 3.5 nv month ---------------------------
electrical characteristics TSX920, tsx921, tsx922, tsx923 6/31 docid024310 rev 3 gbp gain bandwidth product r l = 10 k , c l = 20 pf, g = 20 db 9 mhz f u unity gain frequency r l = 10 k , c l = 20 pf 9.3 m phase margin 60 degrees g m gain margin 6.7 db sr+ positive slew rate av = +1, v out = 0.5 to 4.0 v measured between 10 % to 90 % 14.7 v/ s sr- negative slew rate av = +1, v out = 4.0 to 0.5 v measured between 90 % to 10 % 17.2 e n equivalent input noise voltage f = 10 khz f = 100 khz 17.9 12.9 e n low-frequency peak-to- peak input noise bandwidth: f = 0.1 to 10 hz 8.1 v pp thd+n total harmonic distortion + noise f = 1 khz, av = +1, r l = 10 k , v out = 2 v rms 0.002 % shutdown characteristics (TSX920 and tsx923 only) i cc_shdn supply current in shutdown mode (per amplifier) shdn =v cc- t min < t op < t max 715 20 a t on amplifier turn-on time 9 s t off amplifier turn-off time 0.7 s 1. typical value is based on the vio drift observed after 1000 h at 125 c extrapolated to 25 c using the arrhenius law and assuming an activation energy of 0.7 ev. the operational am plifier is aged in follower mode configuration (see section 4.5: long-term input offset voltage drift ). 2. when used in comparator mode, with high differential input voltage, during a long period of time with v cc close to 16 v and v icm >v cc /2, vio can experience a permanent drift of a few mv drift. this phenomenon is notably worse at low temperatures. table 4. electrical ch aracteristics at v cc+ = +4.5 v with v cc- = 0 v, v icm = v cc /2, t amb = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit nv hz ----------- -
docid024310 rev 3 7/31 TSX920, tsx921, tsx922, tsx923 electrical characteristics 31 table 5. electrical characteristics at v cc+ = +10 v with v cc- = 0 v, v icm = v cc /2, t amb = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit v io input offset voltage t min < t op < t max 4 5 mv v io / t input offset voltage drift 2 10 v/c v io long-term input offset voltage drift (1)(2) TSX920 / tsx921 tsx922 / tsx923 92 128 i ib input bias current v out = v cc /2 t min < t op < t max 10 100 200 pa i io input offset current v out = v cc /2 t min < t op < t max 10 100 200 r in input resistance 1 t c in input capacitance 8 pf cmrr common mode rejection ratio 20 log ( v ic / v io ) v icm = -0.1 v to 7 v, v out = v cc /2 t min < t op < t max v icm = -0.1 v to 10.1 v, v out = v cc /2 t min < t op < t max 72 70 64 62 85 75 db a vd large signal voltage gain r l = 2 k , v out = 0.3 v to 9.7 v t min < t op < t max r l = 10 k , v out = 0.2 v to 9.8 v t min < t op < t max 100 90 100 90 107 117 v oh high level output voltage r l = 2 k to v cc /2 t min < t op < t max r l = 10 k to v cc /2 t min < t op < t max 94 31 110 130 40 50 mv from v cc+ v ol low level output voltage r l = 2 k to v cc /2 t min < t op < t max r l = 10 k to v cc /2 t min < t op < t max 80 14 110 130 40 50 mv i out i sink v out = 10 v t min < t op < t max 50 42 55 ma i source v out = 0 v t min < t op < t max 75 70 82 i cc supply current (per amplifier) no load, v out = v cc /2 t min < t op < t max 3.1 3.6 3.6 gbp gain bandwidth product r l = 10 k , c l = 20 pf, g = 20 db 10 mhz f u unity gain frequency r l = 10 k , c l = 20 pf 11.2 m phase margin 56 degrees g m gain margin 6 db nv month ---------------------------
electrical characteristics TSX920, tsx921, tsx922, tsx923 8/31 docid024310 rev 3 sr+ positive slew rate av = +1, v out = 0.5 to 9.5 v measured between 10 % to 90 % 17.7 v/ s sr- negative slew rate av = +1, v out = 9.5 to 0.5 v measured between 90 % to 10 % 19.6 e n equivalent input noise voltage f = 10 khz f = 100 khz 16.8 12 e n low-frequency peak-to- peak input noise bandwidth: f = 0.1 to 10 hz 8.64 v pp thd+n total harmonic distortion + noise f = 1 khz, av = +1, r l = 10 k , v out = 2 v rms 0.0006 % shutdown characteristics (TSX920 and tsx923 only) i cc_shdn supply current in shutdown mode (per amplifier) shdn =v cc- t min < t op < t max 715 20 a t on amplifier turn-on time 2.4 s t off amplifier turn-off time 0.35 s 1. typical value is based on the vio drift observed after 1000 h at 125 c extrapolated to 25 c using the arrhenius law and assuming an activation energy of 0.7 ev. the operational am plifier is aged in follower mode configuration (see section 4.5: long-term input offset voltage drift ). 2. when used in comparator mode, with high differential input voltage, during a long period of time with v cc close to 16 v and v icm >v cc /2, vio can experience a permanent drift of a few mv drift. this phenomenon is notably worse at low temperatures. table 5. electrical characteristics at v cc+ = +10 v with v cc- = 0 v, v icm = v cc /2, t amb = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit nv hz ----------- -
docid024310 rev 3 9/31 TSX920, tsx921, tsx922, tsx923 electrical characteristics 31 table 6. electrical characteristics at v cc+ = +16 v with v cc- = 0 v, v icm = v cc /2, t amb = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit v io input offset voltage t min < t op < t max 4 5 mv v io / t input offset voltage drift 2 10 v/c v io long-term input offset voltage drift (1)(2) TSX920 / tsx921 tsx922 / tsx923 1.73 2.26 i ib input bias current v out = v cc /2 t min < t op < t max 10 100 200 pa i io input offset current v out = v cc /2 t min < t op < t max 10 100 200 r in input resistance 1 t c in input capacitance 8 pf cmrr common mode rejection ratio 20 log ( v ic / v io ) v icm = -0.1 v to 13 v, v out =v cc /2 t min < t op < t max v icm = -0.1 v to 16.1 v, v out = v cc /2 t min < t op < t max 73 71 67 65 85 76 db svrr supply voltage rejection ratio v cc = 4.5 v to 16 v t min < t op < t max 73 71 85 a vd large signal voltage gain r l = 2 k , v out = 0.3 v to 15.7 v t min < t op < t max r l = 10 k , v out = 0.2 v to 15.8 v t min < t op < t max 100 90 100 90 105 113 v oh high level output voltage r l = 2 k to v cc /2 t min < t op < t max r l = 10 k to v cc /2 t min < t op < t max 150 43 200 230 50 70 mv from v cc+ v ol low level output voltage r l = 2 k to v cc /2 t min < t op < t max r l = 10 k to v cc /2 t min < t op < t max 140 30 200 230 50 70 mv i out i sink v out = 16 v t min < t op < t max 45 40 50 ma i source v out = 0 v t min < t op < t max 65 60 74 i cc supply current (per amplifier) no load, v out = v cc /2 t min < t op < t max 2.8 3.4 3.4 v month ---------------------------
electrical characteristics TSX920, tsx921, tsx922, tsx923 10/31 docid024310 rev 3 gbp gain bandwidth product r l = 10 k , c l = 20 pf, g = 20 db 10 mhz f u unity gain frequency r l = 10 k , c l = 20 pf 12 m phase margin 55 degrees g m gain margin 5.9 db sr+ positive slew rate av = +1, v out = 0.5 to 15.5 v measured between 10 % to 90 % 16.2 v/ s sr- negative slew rate av = +1, v out = 15.5 to 0.5 v measured between 90 % to 10 % 17.2 e n equivalent input noise voltage f = 10 khz f = 100 khz 16.5 11.8 e n low-frequency peak-to- peak input noise bandwidth: f = 0.1 to 10 hz 8.58 v pp thd+n total harmonic distortion + noise f = 1 khz, av = +1, r l = 10 k , v out = 4v rms 0.0003 % t s settling time gain = +1, 100 mv input voltage 0.1 % of final value 1 % of final value 245 178 ns shutdown characteristics (TSX920 and tsx923 only) i cc_shdn supply current in shutdown mode (per amplifier) shdn =v cc- t min < t op < t max 715 20 a t on amplifier turn-on time 1.5 s t off amplifier turn-off time 0.2 s 1. typical value is based on the vio drift observed after 1000 h at 125 c extrapolated to 25 c using the arrhenius law and assuming an activation energy of 0.7 ev. the operational am plifier is aged in follower mode configuration (see section 4.5: long-term input offset voltage drift ). 2. when used in comparator mode, with high differential input voltage, during a long period of time with v cc close to 16 v and v icm >v cc /2, vio can experience a permanent drift of a few mv drift. this phenomenon is notably worse at low temperatures. table 6. electrical characteristics at v cc+ = +16 v with v cc- = 0 v, v icm = v cc /2, t amb = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit nv hz ----------- -
docid024310 rev 3 11/31 TSX920, tsx921, tsx922, tsx923 electrical characteristics 31 figure 2. supply current vs. supply voltage figure 3. distribution of input offset voltage at v cc = 4.5 v 0.0 0.0 2.0 4.0 4.0 6.0 8.0 8.0 10.0 12.0 12.0 14.0 16.0 16.0 0.0 0.0 0.6 1.2 1.2 1.8 2.4 2.4 3.0 3.6 3.6 t=-40c v icm =v cc /2 t=125c t=25c supply current (ma) supply voltage (v) - 3 - 2 - 1 0 1 2 3 05 1 0 1 5 2 0 2 5 3 0 d i s t r i b u t i o n o f v i o v c c = 4 . 5 v , v i c m = 2 . 2 5 v p o p u l a t i o n % i n p u t o f f s e t v o l t a g e m v figure 4. distribution of input offset voltage at v cc = 10 v figure 5. distribution of input offset voltage at v cc = 16 v - 3 - 2 - 1 0 1 2 3 05 1 0 1 5 2 0 2 5 3 0 d i s t r i b u t i o n o f v i o v c c = 1 0 v , v i c m = 5 v p o p u l a t i o n % i n p u t o f f s e t v o l t a g e m v - 3 - 2 - 1 0 1 2 3 05 1 0 1 5 2 0 2 5 3 0 d i s t r i b u t i o n o f v i o v c c = 1 6 v , v i c m = 8 v p o p u l a t i o n % i n p u t o f f s e t v o l t a g e m v figure 6. input offset voltage vs. temperature at v cc = 16 v figure 7. distribution of input offset voltage drift over temperature -40 -40 -20 -20 0 020 20 40 40 60 60 80 80 100 100 120 120 -5 -5 -3 0 0 3 5 5 vcc=16v, vicm=8v input offset voltage (mv) temperature (c) - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 05 1 0 1 5 2 0 2 5 v i o / t v c c = 1 6 v , v i c m = 8 v p o p u l a t i o n % v i o / t v / c
electrical characteristics TSX920, tsx921, tsx922, tsx923 12/31 docid024310 rev 3 figure 8. input offset voltage vs. common mode voltage at v cc = 4 v figure 9. input offset voltage vs. common mode voltage at v cc = 16 v 0.0 0.0 0.3 0.5 0.5 0.8 1.0 1.0 1.3 1.5 1.5 1.8 2.0 2.0 2.3 2.5 2.5 2.8 3.0 3.0 3.3 3.5 3.5 3.8 4.0 4.0 -2.0 -2.0 -1.8 -1.5 -1.5 -1.3 -1.0 -1.0 -0.8 -0.5 -0.5 -0.3 0.0 0.0 0.3 0.5 0.5 0.8 1.0 1.0 t=25c t=-40c t=125c vcc=4v input offset voltage (mv) common mode voltage(v) 0.0 0.0 1.0 2.0 2.0 3.0 4.0 4.0 5.0 6.0 6.0 7.0 8.0 8.0 9.0 10.0 10.0 11.0 12.0 12.0 13.0 14.0 14.0 15.0 16.0 16.0 -2.0 -2.0 -1.8 -1.5 -1.5 -1.3 -1.0 -1.0 -0.8 -0.5 -0.5 -0.3 0.0 0.0 0.3 0.5 0.5 0.8 1.0 1.0 t=25c t=-40c t=125c vcc=16v input offset voltage (mv) common mode voltage(v) figure 10. output current vs. output voltage at v cc = 4 v figure 11. output current vs. output voltage at v cc = 10 v 0.0 0.0 0.5 1.0 1.0 1.5 2.0 2.0 2.5 3.0 3.0 3.5 4.0 4.0 -30 -20 -20 -10 0 0 10 20 20 30 vcc=4v t=-40c t=25c sink vid=-1v t=125c source vid=1v output current (ma) output voltage (v) 0.0 0.0 1.0 2.0 2.0 3.0 4.0 4.0 5.0 6.0 6.0 7.0 8.0 8.0 9.0 10.0 10.0 -75 -50 -50 -25 0 0 25 50 50 vcc=10v t=-40c t=25c sink vid=-1v t=125c source vid=1v output current (ma) output voltage (v) figure 12. output current vs. output voltage at v cc = 16 v figure 13. output rail linearity 0.0 0.0 2.5 5.0 5.0 7.5 10.0 10.0 12.5 15.0 15.0 -75 -50 -50 -25 0 0 25 50 50 vcc=16v t=-40c t=25c sink vid=-1v t=125c source vid=1v output current (ma) output voltage (v) 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 15.4 15.4 15.5 15.5 15.6 15.6 15.7 15.7 15.8 15.8 15.9 15.9 16.0 16.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 15.4 15.4 15.5 15.5 15.6 15.6 15.7 15.7 15.8 15.8 15.9 15.9 16.0 16.0 rl=10k vcc=16v follower configuration t=25c rl=2k output voltage (v) input voltage (v)
docid024310 rev 3 13/31 TSX920, tsx921, tsx922, tsx923 electrical characteristics 31 figure 14. open loop gain vs. frequency figure 15. bode diagram vs. temperature for v cc = 4 v 0.01 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 100 120 140 -360 -320 -280 -240 -200 -160 -120 -80 -40 0 40 80 120 160 200 240 280 320 360 gain (db) frequency (khz) gain phase vcc=16v, vicm=8v, rl=10k , cl=20pf; vrl=vcc/2 phase () 1 10 100 1000 10000 -40 -20 0 20 40 -250 -200 -150 -100 -50 0 50 100 150 200 250 gain (db) frequency (khz) gain phase vcc=4v, vicm=2v, g=100 rl=10k , cl=20pf, vrl=vcc/2 t=125c t=-40c t=25c phase () figure 16. bode diagra m vs. temperature for v cc = 10 v figure 17. bode diagram vs. temperature for v cc = 16 v 1 10 100 1000 10000 -40 -20 0 20 40 -250 -200 -150 -100 -50 0 50 100 150 200 250 gain (db) frequency (khz) gain phase vcc=10v, vicm=5v, g=100 rl=10k , cl=20pf, vrl=vcc/2 t=125c t=-40c t=25c phase () 1 10 100 1000 10000 -40 -20 0 20 40 -250 -200 -150 -100 -50 0 50 100 150 200 250 gain (db) frequency (khz) gain phase vcc=16v, vicm=8v, g=100 rl=10k , cl=20pf, vrl=vcc/2 t=125c t=-40c t=25c phase () figure 18. bode diagram at v cc = 16 v with low common mode voltage figure 19. bode diagram at v cc = 16 v with high common mode voltage 1 10 100 1000 10000 -40 -20 0 20 40 -250 -200 -150 -100 -50 0 50 100 150 200 250 gain (db) frequency (khz) gain phase vcc=16v, vicm=0.5v, g=100 rl=10k , cl=20pf, vrl=vcc/2 t=125c t=-40c t=25c phase () 1 10 100 1000 10000 -40 -20 0 20 40 -250 -200 -150 -100 -50 0 50 100 150 200 250 gain (db) frequency (khz) gain phase vcc=16v, vicm=15.5v, g=100 rl=10k , cl=20pf, vrl=vcc/2 t=125c t=-40c t=25c phase ()
electrical characteristics TSX920, tsx921, tsx922, tsx923 14/31 docid024310 rev 3 figure 20. bode diagram at v cc = 16 v and r l = 10 k , c l = 47 pf figure 21. bode diagram at v cc = 16 v and r l = 10 k , c l = 120 pf 1 10 100 1000 10000 -40 -20 0 20 40 -250 -200 -150 -100 -50 0 50 100 150 200 250 gain (db) frequency (khz) gain phase vcc=16v, vicm=8v, g=100 rl=10k , cl=47pf, vrl=vcc/2 t=125c t=-40c t=25c phase () 1 10 100 1000 10000 -40 -20 0 20 40 -250 -200 -150 -100 -50 0 50 100 150 200 250 gain (db) frequency (khz) gain phase vcc=16v, vicm=8v, g=100 rl=10k , cl=120pf, vrl=vcc/2 t=125c t=-40c t=25c phase () figure 22. bode diagram at v cc = 16 v and r l = 2.2 k , c l = 20 pf figure 23. slew rate vs. supply voltage and temperature 1 10 100 1000 10000 -40 -20 0 20 40 -250 -200 -150 -100 -50 0 50 100 150 200 250 gain (db) frequency (khz) gain phase vcc=16v, vicm=8v, g=100 rl=2.2k , cl=20pf, vrl=vcc/2 t=125c t=-40c t=25c phase () 4.0 4.0 5.0 6.0 6.0 7.0 8.0 8.0 9.0 10.0 10.011.012.0 12.013.014.0 14.015.016.0 16.0 -30 -20 -20 -10 0 0 10 20 20 30 sr positive t=-40c t=25c vicm=vrl=vcc/2 rl=10k , cl=20pf vin from 0.5v to vcc-0.5v t=125c sr negative slew rate (v/s) vcc (v) figure 24. overshoot vs. capacitive load without feedback capacitor figure 25. closed loop gain vs. frequency with different gain resistors 10 100 1000 0 0 5 10 10 15 20 20 25 30 30 35 40 40 45 50 50 55 60 60 65 70 70 75 80 80 g=-1 g=1 vcc=16v, 100mvpp, rl=10k overshoot (%) load capacitance (pf) 1k 10k 100k 1m 10m -30 -20 -10 0 10 20 rf=rg=1k rf=rg=10k rf=rg=30k vcc=16v vicm=vcc/2 gain=-1 cf=0pf rl=10k cl=20pf rf=rg=100k gain (db) frequency (hz)
docid024310 rev 3 15/31 TSX920, tsx921, tsx922, tsx923 electrical characteristics 31 figure 26. large step response figure 27. small step response -1.0 0.0 1.0 2.0 3.0 -5.00 -4.00 -4.00 -3.00 -2.00 -2.00 -1.00 0.00 0.00 1.00 2.00 2.00 3.00 4.00 4.00 5.00 vcc = 16v rl=10k cl=20pf g=1 t=25c output voltage (v) time (s) 20.0 20.2 20.4 20.6 20.8 -0.05 -0.04 -0.04 -0.03 -0.02 -0.02 -0.01 0.00 0.00 0.01 0.02 0.02 0.03 0.04 0.04 0.05 vcc = 16v rl=10k cl=20pf g=1 t=25c output voltage (v) time (s) figure 28. small step response with feedback capacitor c f figure 29. output impedance vs. frequency in closed loop configuration -500.0n 0.0 500.0n 1.0 1.5 -0.10 -0.10 -0.08 -0.05 -0.05 -0.03 0.00 0.00 0.03 0.05 0.05 0.08 0.10 0.10 no cf cf=3pf cf=2pf vcc = 16v rl=10k cl=20pf g=-1 rf=rg=10k t=25c output voltage (v) time (s) 0.1 1 10 100 1000 10000 0.01 0.1 1 10 100 1000 vcc=4v to 16v osc level=30mv rms g=1 ta=25 c output impedance ( ) frequency (khz) figure 30. noise vs. frequency with 16 v supply voltage figure 31. 0.1 to 10 hz noise 100m 1 10 100 1k 10k 0 100 200 300 400 500 equivalent input voltage noise (nv/vhz) frequency (khz) vicm=15.5v vicm=0.5v vicm=8v tamb=25c 23 -3 -2 -1 0 1 2 3 4 5 6 output voltage (v) time (s) noise 0.1hz_10hz 8.58 vpp
electrical characteristics TSX920, tsx921, tsx922, tsx923 16/31 docid024310 rev 3 figure 32. thd+n vs. frequency at v cc = 16 v figure 33. thd+n vs. output voltage at v cc = 16 v 100 1000 10000 100000 1e-4 1e-3 0.01 0.1 rl=2k vin=2vrms gain=1 bw=80khz vcc=16v vicm=vcc/2 rl=600 rl=10k thd + n (%) frequency (hz) 0.01 0.1 1 1e-4 1e-3 0.01 0.1 1 rl=600 f=1khz gain=1 bw=22khz vcc=16v vicm=vcc/2 rl=2k rl=10k thd + n (%) output voltage (vrms) figure 34. power supply rejection ratio (psrr) vs. frequency figure 35. crosstalk vs. frequency between operators on tsx922 at v cc = 16 v 10 100 1000 10000 100000 1000000 0 -20 -40 -60 -80 -100 -120 -psrr +psrr vcc=16v, vicm=8v, g=1 rl=10k , cl=20pf, vripple=100mvpp psrr (db) frequency (hz) 1k 10k 100k 1m 10m -180 -160 -140 -120 -100 -80 -60 -40 -20 0 ch2 to ch1 ch1 to ch2 vcc=16v vicm=vcc/2 rl=10k cl=20pf vout=3.5vrms crosstalk (db) frequency (hz) figure 36. startup time after standby released for v cc = 4 v figure 37. startup time after standby released for v cc = 16 v -20.0 -10.0 0.0 10.0 20.0 30.0 -1.00 0.00 0.00 1.00 2.00 2.00 3.00 4.00 4.00 5.00 output 125c output 25c output -40c standby vcc = 4v rl=10k cl=20pf g=1 output voltage (v) time (s) -2.0 0.0 2.0 4.0 6.0 0.00 0.00 2.50 5.00 5.00 7.50 10.00 10.00 12.50 15.00 15.00 17.50 20.00 20.00 output 125c output 25c output -40c standby vcc = 16v rl=10k cl=20pf g=1 output voltage (v) time (s)
docid024310 rev 3 17/31 TSX920, tsx921, tsx922, tsx923 application information 31 4 application information 4.1 operating voltages the tsx92x operational amplifiers can operate from 4 v to 16 v. the parameters are fully specified at 4.5 v, 10 v, and 16 v power supplies. however, parameters are very stable in the full v cc range. additionally, main specifications are guaranteed in the extended temperature range from -40 to +125 c. 4.2 rail-to-rail input the tsx92x series is designed with two comple mentary pmos and nmos input differential pairs. the device has a rail-to-rail input and th e input common mode range is extended from (v cc- ) - 0.1 v to (v cc+ ) + 0.1 v. however, the performance of this device is clearly optimized for the pmos differential pairs (which means from (v cc- ) - 0.1 v to (v cc+ ) - 2 v). beyond (v cc+ ) - 2 v, the operational amplifier is still functional but with downgraded performances (see figure 19 ). performances are still suit able for a large number of applications requiring the rail-to-rail input feature. the tsx92x operational amplifiers are designed to prevent phase reversal. 4.3 input pin voltage range the tsx92x operational amplifiers have inte rnal esd diode protections on the inputs. these diodes are connected be tween the input and each supp ly rail to protect mosfets inputs from electrostatic discharges. thus, if the input pin voltage exceeds the power supply by 0.5 v, the esd diodes become conductive and excessive current could flow through them. to prevent any permanent damage, this current must be limited to 10 ma . this can be done by adding a resistor in series with the input pin ( figure 38 ). the resistor value has to be calculated for a 10 ma current limitation on the input pins. figure 38. limiting input current with a series resistor 9 lq 5 9 rxw     9 76; *$06&%
application information TSX920, tsx921, tsx922, tsx923 18/31 docid024310 rev 3 4.4 input offset voltage drift over temperature the maximum input voltage drift over the temperature variation is defined as the offset variation related to offset value measured at 25 c. the operational amplifier is one of the main circuits of the signal conditioning chai n, and the amplifier input offset is a major contributor to the chain accuracy. the signal chain accuracy at 25 c can be compensated during production at application level. the ma ximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations. the maximum input voltage drift over temperature is computed using equation 1 . equation 1 with t = -40 c and 125 c. the datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a c pk (process capability in dex) greater than 2. 4.5 long-term input of fset voltage drift to evaluate product reliability, two ty pes of stress acceleration are used: ? voltage acceleration, by changing the applied voltage ? temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. the voltage acceleration has been defined bas ed on jedec results, and is defined using equation 2 . equation 2 where: a fv is the voltage acceleration factor is the voltage acceleration constant in 1/v, constant technology parameter ( = 1) v s is the stress voltage used for the accelerated test v u is the voltage used for the application the temperature acceleration is driven by the arrhenius model, and is defined in equation 3 . equation 3 v io t ----------- - max v io t () v io 25 c () ? t25 c ? --------------------------------------------------- = a fv e v s v u ? () ? = a ft e e a k ------ 1 t u ------ 1 t s ------ ? ?? ?? ? =
docid024310 rev 3 19/31 TSX920, tsx921, tsx922, tsx923 application information 31 where: a ft is the temperature acceleration factor e a is the activation energy of the technology based on the failure rate k is the boltzmann constant (8.6173 x 10 -5 ev.k -1 ) t u is the temperature of the die when v u is used (k) t s is the temperature of the die under temperature stress (k) the final acceleration factor, a f , is the multiplication of the voltage acceleration factor and the temperature acceleration factor ( equation 4 ). equation 4 a f is calculated using the temperature and volt age defined in the mission profile of the product. the a f value can then be used in equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. equation 5 to evaluate the op-amp reliability, a fo llower stress conditio n is used where v cc is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by jedec rules). the v io drift (in v) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see equation 6 ). equation 6 the long-term drift parameter ( v io ), estimating the reliability pe rformance of the product, is obtained using the ratio of the v io (input offset voltage value) dr ift over the square root of the calculated number of months ( equation 7 ). equation 7 where v io drift is the measured drift value in the specified test conditions after 1000 h stress duration. a f a ft a fv = months a f 1000 h 12 months 24 h 365.25 days () ? = v cc maxv op with v icm v cc 2 ? == v io v io drift months () ------------------------------ =
application information TSX920, tsx921, tsx922, tsx923 20/31 docid024310 rev 3 4.6 capacitive load driving a large capacitive load can cause st ability issues. increasing the load capacitance produces gain peaking in the frequency respon se, with overshooting and ringing in the step response. it is usually considered that with a gain peaking higher than 2.3 db the op-amp might become unstable. generally, the unity gain configuration is the wo rst configuration for stability and the ability to driv e large capacitive loads. figure 39 shows the serial resistor (riso) that must be added to the output, to make the system stable. figure 39. stability criteria with a serial resistor figure 40. test configuration for riso 0.01 0.1 1 10 100 10 100 stable vcc=16v, vicm=8v, t=25c, r load = 10 k follower configuration unstable serial resistor (ohm) capacitive load (nf) & ordg 9 ,1   9 5lvr *$06&% 9 n?
docid024310 rev 3 21/31 TSX920, tsx921, tsx922, tsx923 application information 31 4.7 high side current sensing tsx92x rail to rail input devices can be used to measure a small differential voltage on a high side shunt resistor and translate it into a ground referenced output voltage. the gain is fixed by external resistance. figure 41. high side current sensing configuration v out can be expressed as shown in equation 8 . equation 8 assuming that r f2 = r f1 = r f and r g2 = r g1 = r g , equation 8 can be simplified as equation 9 . equation 9 with the tsx92x operational amplifiers, the high side current measurement must be made by respecting the common mode voltage of the amplifier: (v cc- ) - 0.1 v to (v cc+ ) + 0.1 v. if the application requires a higher common voltage please refer to the tsc high side current sensing family. 5i , s 76; 9 287 9 , q 5i 5j 5j     9 5 vkxqw & ordg *$06&% , v out r shunt i1 r g2 r g2 r f2 + ------------------------ - ? ? 1 r f1 r g1 --------- - + ?? ?? ? ? ? i p r g2 r f2 r g2 r f2 + ------------------------ - ?? ?? 1 r f1 r g1 --------- - + ?? ?? i n xr f1 v io 1 r f1 r g1 --------- - + ?? ?? ? ? + = v out r shunt i r f r g ------ - ? ? ? ? v io 1 r f r g ------ - + ?? ?? ? r f i io + =
application information TSX920, tsx921, tsx922, tsx923 22/31 docid024310 rev 3 4.8 high speed photodiode the tsx92x series is an excelle nt choice for current to voltage (i-v) conversions. due to the cmos technology, the input bias currents are extremely low. moreover, the low noise and high unity-gain bandwidth of the tsx92x oper ational amplifiers make them particularly suitable for high-speed photodi ode preamplifier applications. the photodiode is considered as a capacitive current source. the input capacitance, c in , includes the parasitic input common mode capacitance, c cm (3pf), and the input differential mode capacitance, c diff (8pf). c in acts in parallel with the intrinsic capacitance of the photodiode, c d . at higher frequencies, the capacitors affect the circuit response. the output capacitance of a curren t sensor has a strong effect on the stability of the op-amp feedback loop. c f stabilizes the gain and limits the transimp edance bandwidth. to ensure good stability and to obtain good noise performance, c f can be set as shown in equation 10 . equation 10 where, ? c in = c cm + c diff = 11 pf ? c diff is the differential input capacitance: 8 pf typical ? c cm is the common mode input capacitance: 3 pf typical ? c d is the intrinsic capacitance of the photodiode ? c smr is the parasitic capacitance of the surface mount r f resistor: 0.2 pf typical ? f gbp is the gain bandwidth product: 10 mhz at 16 v r f fixes the gain as shown in equation 11 . equation 11 figure 42. high speed photodiode c f c in c d + 2 r f f gbp ?? ? ------------------------------------------------- - c smr ? > v out r f i d = 9 287   9 && *$06&% 9 && 5 ) & ) & lq & ' * % 1ipupejpef
docid024310 rev 3 23/31 TSX920, tsx921, tsx922, tsx923 package information 31 5 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions a nd product status are available at: www.st.com . ecopack ? is an st trademark.
package information TSX920 , tsx921, tsx922, tsx923 24/31 docid024310 rev 3 5.1 sot23-5 package mechanical data figure 43. sot23-5 package mechanical drawing table 7. sot23-5 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 0.90 1.20 1.45 0.035 0.047 0.057 a1 0.15 0.006 a2 0.90 1.05 1.30 0.035 0.041 0.051 b 0.35 0.40 0.50 0.013 0.015 0.019 c 0.09 0.15 0.20 0.003 0.006 0.008 d 2.80 2.90 3.00 0.110 0.114 0.118 d1 1.90 0.075 e 0.95 0.037 e 2.60 2.80 3.00 0.102 0.110 0.118 f 1.50 1.60 1.75 0.059 0.063 0.069 l 0.10 0.35 0.60 0.004 0.013 0.023 k 0 degrees 10 degrees
docid024310 rev 3 25/31 TSX920, tsx921, tsx922, tsx923 package information 31 5.2 sot23-6 package mechanical data figure 44. sot23-6 package mechanical drawing table 8. sot23-6 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 0.90 1.45 0.035 0.057 a1 0.10 0.004 a2 0.90 1.30 0.035 0.051 b 0.35 0.50 0.013 0.019 c 0.09 0.20 0.003 0.008 d 2.80 3.05 0.110 0.120 e 1.50 1.75 0.060 0.069 e 0.95 0.037 h 2.60 3.00 0.102 0.118 l 0.10 0.60 0.004 0.024 0 10 0 10
package information TSX920 , tsx921, tsx922, tsx923 26/31 docid024310 rev 3 5.3 miniso8 package information figure 45. miniso8 package mechanical drawing table 9. miniso8 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 1.1 0.043 a1 0 0.15 0 0.006 a2 0.75 0.85 0.95 0.030 0.033 0.037 b 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 d 2.80 3.00 3.20 0.11 0.118 0.126 e 4.65 4.90 5.15 0.183 0.193 0.203 e1 2.80 3.00 3.10 0.11 0.118 0.122 e 0.65 0.026 l 0.40 0.60 0.80 0.016 0.024 0.031 l1 0.95 0.037 l2 0.25 0.010 k 0 8 0 8 ccc 0.10 0.004
docid024310 rev 3 27/31 TSX920, tsx921, tsx922, tsx923 package information 31 5.4 so8 package information figure 46. so8 package mechanical drawing table 10. so8 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a1.750.069 a1 0.10 0.25 0.004 0.010 a2 1.25 0.049 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 d 4.80 4.90 5.00 0.189 0.193 0.197 e 5.80 6.00 6.20 0.228 0.236 0.244 e1 3.80 3.90 4.00 0.150 0.154 0.157 e 1.27 0.050 h 0.25 0.50 0.010 0.020 l 0.40 1.27 0.016 0.050 l1 1.04 0.040 k0 8 1 8 ccc 0.10 0.004
package information TSX920 , tsx921, tsx922, tsx923 28/31 docid024310 rev 3 5.5 dfn8 2x2 pack age information figure 47. dfn8 2x2 package mechanical drawing table 11. dfn8 2x2 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 0.70 0.75 0.80 0.028 0.030 0.031 a1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.20 0.25 0.006 0.008 0.010 d 2.00 0.079 e 2.00 0.079 e 0.50 0.020 l 0.045 0.55 0.65 0.018 0.022 0.026 n8 8 h / %277209,(:   3lq,'  3,1,1'(;$5($  (  & $ $ 3/$1( 6($7,1* 7239,(:  &  & [ [ ' 3,1,1'(;$5($ e sofv  &  & $ % % $ & 6,'(9,(: *$06&%
docid024310 rev 3 29/31 TSX920, tsx921, tsx922, tsx923 package information 31 5.6 miniso10 package information figure 48. miniso10 package mechanical drawing table 12. miniso10 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a1.100.043 a1 0.05 0.10 0.15 0.002 0.004 0.006 a2 0.78 0.86 0.94 0.031 0.034 0.037 b 0.25 0.33 0.40 0.010 0.013 0.016 c 0.15 0.23 0.30 0.006 0.009 0.012 d 2.90 3.00 3.10 0.114 0.118 0.122 e 4.75 4.90 5.05 0.187 0.193 0.199 e1 2.90 3.00 3.10 0.114 0.118 0.122 e 0.50 0.020 l 0.40 0.55 0.70 0.016 0.022 0.028 l1 0.95 0.037 k 0 3 6 0 3 6 aaa 0.10 0.004
ordering information TSX920, tsx921, tsx922, tsx923 30/31 docid024310 rev 3 6 ordering information 7 revision history table 13. order codes order code temperature range package packing marking TSX920ilt -40 c to +125 c sot23-6 tape and reel k304 tsx921ilt sot23-5 tsx921iylt (1) 1. qualified and characterized according to aec q100 and q003 or equivalent, advanced screening according to aec q001 & q 002 or equivalent. k305 tsx922idt so8 tsx922i tsx922iydt (1) sx922iy tsx922ist miniso8 k305 tsx922iq2t dfn8 2x2 k26 tsx923ist miniso10 k305 table 14. document revision history date revision changes 12-apr-2013 1 initial release 27-jun-2013 2 added TSX920,tsx922, tsx923 devices. added packages for TSX920,tsx922, and tsx923. added shutdown characteristics in table 4 , table 5 , and table 6 . added figure 35 , figure 36 , and figure 37 . updated table 13 for new order codes. 10-dec-2013 3 added long-term input offset voltage drift parameter in table 4 , ta ble 5 , and table 6 . added section 4.4: input offset voltage drift over temperature in section 4: application information . added section 4.5: long-term input offset voltage drift section in section 4: application information .
docid024310 rev 3 31/31 TSX920, tsx921, tsx922, tsx923 31 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. st products are not designed or authorized for use in: (a) safety critical applications such as life supporting, active implanted devices or systems wi th product functional safety requirements; (b) aeronautic applications; (c) automotive applications or environments, and/or (d) aerospace applications or environments. where st products are not designed for such use, the purchaser shall use products at purchaser?s sole risk, even if st has been informed in writing of such usage, unless a product is expressly designated by st as being intended for ?automotive, automotive safety or medical? industry domains according to st product design specifications. products formally escc, qml or jan qualified are deemed suitable for use in aerospace by the corresponding governmental agency. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2013 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of TSX920

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X